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We show how applying field conjugated to the order parameter may act as a very precise probe to explore
the probability distribution function of the order parameter. Using this “magnetic-field scanning” on large-scale
numerical simulations of the critical two-dimensional XY model, we are able to discard the conjectured
double-exponential form of the large-magnetization asymptote.
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I. INTRODUCTION

Derivation of the complete equation of state of a many-
body system is generally a formidable task. When the system
may appear under various phases at the thermodynamic equi-
librium, this problem requires knowledge of the exact prob-
ability distribution function �PDF� of its order parameter. De-
spite a number of attempts, just a few instances are available
�1�. Even the exact PDF for the two-dimensional �2D� Ising
model is still unknown.

Within this context, the critical point is very particular,
since the universality concept tells us that only limited infor-
mation is needed to obtain the complete leading critical be-
havior. For instance, general arguments give precisely the tail
of the critical PDF, P�m�, for the large values of the order
parameter, m, namely �2�,

P�m� � e−cm�+1
, �1�

with c a positive constant and � the magnetic field critical
exponent, or the distribution of the zeros of the Ising parti-
tion function in the complex magnetic field �3� �such a
partition function is Fourier transform of the PDF�.

In the present work, we explain how the real magnetic
field can be generally used as a very accurate probe to scan
quantitatively the zero-field PDF tail, exemplifying the
method with the critical 2D XY model. By the way, we will
see that the popular double-exponential approximation of the
PDF for this system in the low-temperature range cannot be
correct at the critical temperature, and we provide alternative
approximation which is consistent with the critical behavior.
Consequently, our results discard possible fundamental con-
nection between the behavior of this magnetic model at the
critical point and the field of extreme value statistics.

II. FORMER APPROXIMATION OF THE
MAGNETIZATION PDF FOR THE CRITICAL 2D

XY-MODEL

It was argued �4–7� that the PDF P�m� of the magnetiza-
tion m of the 2D XY model, at temperatures smaller but close
to the Berezinskii-Kosterlitz-Thouless �BKT� critical tem-

perature, could be approximated by the generalized Gumbel
form,

P�m� � exp�b�z� − ��ea�z�� , �2�

where the reduced magnetization z�= �m− �m�� /� is used.
From low-temperature spin-wave theory and direct
numerical simulations, one obtains �5�

a� � 1.105; b� � 1.74; �� � 0.69. �3�

It was regularly noticed �5� that the form �2� cannot be the
exact solution of the corresponding statistical problem, and
the alternative form �1� was proposed �5�. Indeed, Eq. �2� is
inconsistent with the general behavior �1�, since �=15 for
the 2D XY model. On the other hand, Eq. �2� is appealing, as
it suggests connection between the 2D XY model close to the
critical temperature and the statistics of extreme variables
�8�. Therefore, the question of a possible bridge between
these two active fields of statistical physics should be exam-
ined precisely. The additional question to know whether re-
lation �1� could fail for this system is also fundamentally
important. We will examine hereafter these two questions.

III. TWO ALTERNATIVE HYPOTHESIS

We consider the 2D XY model �9� on a square lattice of
size L�L with periodic boundary conditions. The N=L2

classical spins are confined in the x-y lattice plane, and they
interact according to the Hamiltionian H=−J	�i,j�Si ·S j,
where J�0 is the ferromagnetic coupling constant and the
sum runs over all nearest-neighbor pairs of spins. Eventual
critical features are characterized by the singular behavior of
the scalar magnetization per site: m
 1

N
��	iSi�2, which is a

non-negative real number. We define also the instantaneous
magnetization direction as the angle � such that
	iSi

x=mN cos � and 	iSi
y =mN sin �.

There is a continuous line of critical points for any tem-
perature below the critical BKT temperature TBKT �10�. In
this region, 0	T	TBKT, the system is critical, and
asymptotic �i.e., L→
� self-similarity results in the so-called
first-scaling law �11�:
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�m�P�m� = �T�z1�, with z1 

m

�m�
, �4�

and �T is a scaling function which depends only on the
actual temperature T. Under this form, the hyperscaling rela-
tion, �m� /�=constant term, is automatically realized. Equa-
tion �4� is sequel of the standard finite-size scaling theory
�12�, but it is highly advantageous that Eq. �4� does not re-
quire knowledge of any critical exponent. Figure 1 gives a
numerical exemplification of the first-scaling law at TBKT,
and illustrates the overall shape of the distribution �c�z1�
�hereafter, the index“c” refers to the BKT critical point, T
=TBKT�.

We separate the free energy F of the 2D XY system at
equilibrium �temperature T=1/�� into the sum of a regular
part describing the small values of the magnetization, a sin-
gular part �14� vanishing as the essential singularity �15,16�
when T→TBKT, and a regular part for the large values of the
magnetization, namely,

�F�m� = 0�m/�m�� + S�m/�m�� + 
�m/�m�� . �5�

Clearly, discussion on the system behavior can be carried out
either through the free energy �5� or the first-scaling law �4�,
since ln P�m�=−�F�m�+constant term.

A. The regular small-m tail

As the singular behavior should vanish at the BKT tran-
sition, we study first the regular small-m behavior of P�m� at
T=TBKT. Numerical results for Pc�m� are shown in Fig. 2 in
the form �4�. They suggest the leading form

ln Pc�m� � b1�m/�m�c�2. �6�

B. The singular small-m tail

We consider now the singular part of the free energy
through the combination ln(�m�P�m�)−ln(�m�cPc�m�) vs the
reduced magnetization z1
m / �m�. The data plotted in Fig.
3, suggest a cubic z1

3 behavior:

S�z1� � c�T�z1
3, �7�

for every T�TBKT, and for the values of m smaller than the
mean. Moreover, c�TBKT�=0.

FIG. 1. PDF of the magnetization for the 2D XY model at the
critical temperature TBKT, plotted in the first-scaling form �4�. The
scaling law is confirmed for L=64 �stars� and L=128 �circles�,
while the L=16 �continuous line� shows finite-size deviation.
Wolff’s single-cluster algorithm was used �13�. Each data set
corresponds to average over 25 000 000 independent realizations.

FIG. 2. Part m	 �m�c of the logarithm of the scaled PDF �4� vs
z1

2, for the 2D XY model at T=TBKT. The solid straight line is
the best fit: ln(�m�cPc�m�)=b1z1

2+constant term for the L=128,
z1�0.8, data. Numerically, b1=12.7. Same symbols as in Fig. 1.

FIG. 3. Part m	 �m� of the logarithm of the scaled PDF, cor-
rected by the regular part of the free energy, for L=16 and four
different temperatures: T=0.3 �circles�, T=0.6 �squares�, T=0.8
�diamonds�, and T=0.885 �stars� which is close to the critical tem-
perature �TBKT�0.893 �19��. The plot is versus z1

3
�m / �m��3. The
straight lines are the best fits Eq. �7�.
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C. The large-m tail at BKT point

Instead of using multicanonical Monte Carlo simulations
�17� which need too large system sizes to conclude �18�, we
consider static in-plane magnetic field, H, as a probe to study
the features of the PDF for the large values of the magneti-
zation. Indeed, as the intensity of H increases, the most prob-
able magnetization, mH

� , as well as its mean value, �mH�,
explores larger values of the PDF tail. We consider two al-
ternative forms for the critical tail, namely, �a� the “Gumbel-
like” shape �2�—noted below: “hypothesis �G�”—which
writes in the first-scaling form

�c�z1� � exp�− �0ea0z1� for z1 → 
 �G� ,

with a0=a�� ��m�c /�c� ��16.4 from Eq. �3� and Table I�,
and �0=��e−a0. It is the form suggested in �4–6�. �b� The
“Weibull-like” critical shape—noted below: “hypothesis
�W�”—which is �20�

�c�z1� � exp�− �1z1
�+1� for z1 → 
 �W� ,

with �1 a positive parameter, and �+1=16 �21�.
Let � be the direction of H with respect to the x axis

�i.e., H= �H cos � ,H sin ���. According to general thermo-
dynamics, the magnetization PDF is given by Pc�m ,H�
�exp�−�cF+�cL

2mH cos��−���, with the fieldless free en-
ergy F. The most probable magnetization direction is given
by �Pc�m ,H� /��=0, leading to �=�, while the most
probable magnetization, mH

� , is the solution of the equation
�Pc�m ,H� /�m=0 for a given value of H. Rewritten in terms
of the auxiliary variables X
H / �m�c

� and Y 
H /mH
��,

Eqs. �5� and �6�, with hypothesis �G� or �W�, result, respec-
tively, in

X

A
+ 2b1�X

Y
1/�

= �0a0ea0�X/Y�1/�
�8�

or

=�1�� + 1�
X

Y
, �9�

which are implicit equations for the most probable magneti-
zation, mH

� �written in the combination Y� vs the magnetic
field H and the system size N �written in the combination X�.
The constant A is such that A−1=�cL

2�m�c
�+1�1.07.

For the large magnetic field, mH
� is expected to be much

larger than �m�c, that is, X /Y �1. Consequently, the solution
of Eq. �8� is

Y = a0
�X/�ln X + C��, �10�

where C=−ln�A�0a0��14.2 is a positive constant.
Within the hypothesis �W�, one has �X /Y�1/��X /Y, such

that Eq. �9� shows that Y is asymptotically a constant

Y � A�1�� + 1� . �11�

So, increase of Y with the intense magnetic field should be
interpretated as a failure of �W�.

IV. INFERENCE FROM THE NUMERICAL SIMULATIONS

Both solutions, Eqs. �10� and �11�, are drawn in Fig. 4 in
comparison with the results of large-scale numerical simula-
tions of the 2D XY model with the in-plane magnetic field at
the BKT temperature. It is clear that the numerical simula-
tions are consistent with the hypothesis �W�, while the
double-exponential tail �G� should be discarded. This sug-
gests the following form of the critical PDF for the 2D XY
model:

TABLE I. Temperature, system size, average magnetization per
spin, ratio of average magnetization to standard deviation. The best
fit for the latter is �m�c /�c=14.81−21.5/L at the BKT temperature
TBKT=0.893.

T L �m� �m� /�

0.3 16 0.923218 66.958

0.6 16 0.836307 29.249

0.8 16 0.764091 18.260

0.885 16 0.723259 13.907

0.893 16 0.718814 13.467

0.893 32 0.662819 14.119

0.893 64 0.611181 14.486

0.893 96 0.582217 14.583

0.893 128 0.563209 14.644

0.893 256 0.518921 14.687

0.893 512 0.478045 14.829

FIG. 4. Double-logarithmic plot of H / �mH�� vs the reduced
magnetic field HLyH with yH=2� / ��+1�. These two variables are
convenient for the numerical simulations and simply related to the
variables X and Y of the text: H / �mH��=Y � �mH

� / �mH��� and
HLyH =X� �A�c�−�/��+1�, with the constant values �mH

� / �mH����1
and �A�c�−�/��+1��0.96. The dashed curve is the solution of the first
Eq. �8� �corresponding to the hypothesis �G��, while the dotted line
is Eq. �11�, with �1=�� in agreement with Eq. �13�. The system size
goes from L=16 up to L=512. Each point corresponds to an aver-
age over 100 000 independent realizations �22�.
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Pc�m� � eb1z1
2−�1z1

16
, z1 
 m/�m� . �12�

Below the BKT critical temperature, additional term +c�T�z1
3

should appear in the exponential.
In order to understand the origin of the approximation

�2�, let us change the reduced magnetization according to
z1=1+z� / ��m� /��. At TBKT, and for the small values of
z� / ��m�c /�c� �recall that �z��=0 and that �m�c /�c�14.8 is a
rather large number�, we obtain

Pc�m� � e2b1z�/��m�c/�c�−�1�1 + z�/��m�c/�c��16
.

Writing then 1+z� / ��m�c /�c��ez�/��m�c/�c�, yields Eq. �2�,
provided the following relations are verified:

a� =
16

�m�c/�c
; b� =

2b1

�m�c/�c
; �� = �1. �13�

So, Eq. �2� appears to be a good approximation around the
most probable magnetization, but is inconsistent with the
general critical relation �mH��H1/�, unlike Eq. �12�. By the
way, the conjectured relation �5� b� /a�=� /2 writes simply
b1=4�, that we accept here as a conjecture �numerically
b1�12.7, see Fig. 2�.

V. CONCLUSION

In the present work, we explained how the use of the field
conjugated to the order parameter provides unique informa-
tion on the tail of the probability distribution function of the
order parameter. This is of major importance for the critical
systems, since the tail shape is directly linked to the value of
the magnetic critical exponent. Therefore, this general
method provides an alternative way to calculate or measure
the critical exponent �.

We chose to use this method with the 2D XY model at the
critical temperature. Indeed, a double-exponential approxi-
mation of the magnetization PDF in the zero magnetic field
is found to be inconsistent with the critical behavior of the
system—though correct near the most probable magnetiza-
tion. Our analysis is only done at the BKT temperature.
However, when the temperature is reduced the same type of
solution �W�, with different values of �, is expected along
the line of critical points. Finally, the Gumbel distribution
becomes a good approximation in the low-temperature range
�spin-wave solution region� when excitations of vortex pairs
are negligible.
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